Category Archives: .Net Framework

Short Walks – Using AppSettings.json in Asp Net Core

One of the things that is very different when you move to Asp.Net Core is the way that configuration files are treated. This partly comes from the drive to move things that are not configuration out of configuration files. It looks like the days of app.config and web.config are numbered and, in their place, we have AppSettings.Json. Here’s an example of what that new file might look like:

{
  "Logging": {
    "LogLevel": {
      "Default": "Warning"
    }
  },
  "AzureAppSettings": {
    "ApplicationInsightsKey": "1827374d-1d50-428d-92a1-c65fv2d73272"
  }
 
}
 

The old files were very flat and, using the configuration manager, you could simply read a setting; something like this:

var appSettings = ConfigurationManager.AppSettings;
string result = appSettings[key];

So, the first question is: can you still do this? The answer is, pretty much, yes:

public void ConfigureServices(IServiceCollection services)
{            
    IConfigurationBuilder builder = new ConfigurationBuilder()
          .SetBasePath(Directory.GetCurrentDirectory())
          .AddJsonFile("appsettings.json");
    Configuration = builder.Build();

    Configuration["AzureAppSettings:ApplicationInsightsKey"]

However, you now have the option of creating a class to represent your settings; something like:

AzureAppSettings azureAppSettings = new AzureAppSettings();
Configuration.GetSection("AzureAppSettings").Bind(azureAppSettings);

If you use this approach then you’ll need an extension library from NuGet:

Install-Package Microsoft.Extensions.Configuration.Binder

Is it better, or worse?

At first glance, it would appear that things have gotten worse; or at least, more complex. However, the previous method had one massive problem: it was a static class. The result being that most people have written their own wrapper around the ConfigurationManager class. We now have a class that can be injected out of the box; alternatively, you can split your configuration up into classes, and pass the classes around; the more I think about this, the better I like it: it makes more sense to have a class or method accept parameters that are necessary for its execution and, arguably, breaks the single responsibility principle if you’re faffing around trying to work out if you have all the operating parameters.

The other advantage here is that the configuration file can now be hierarchical. If you have well designed, small pieces of software then this might not seem like much of an advantage, but if you have 150 settings in your web.config, it makes all the difference.

Short Walks – C# Pattern Matching to Match Ranges

Back in 2010, working at the time in a variety of languages, including VB, I asked this question on StackOverflow. In VB, you could put a range inside a switch statement, and I wanted to know how you could do that in C#. The (correct) answer at the time was that you can’t.

Fast forward just eight short years, and suddenly, it’s possible. The new feature of pattern matching in C# 7.0 has made this possible.

You can now write something like this (this is C# 7.1 because of Async Main):

static async Task Main(string[] args)
{            
    for (int i = 0; i <= 20; i++)
    {
        switch (i)
        {
            case var test when test <= 2:
                Console.WriteLine("Less than 2");
                break;
 
            case var test when test > 2 && test < 10:
                Console.WriteLine("Between 2 and 10");
                break;
 
            case var test when test >= 10:
                Console.WriteLine("10 or more");
                break;
        }
 
        await Task.Delay(500);
    }
 
    Console.ReadLine();
}

References

https://docs.microsoft.com/en-us/dotnet/csharp/pattern-matching

https://visualstudiomagazine.com/articles/2017/02/01/pattern-matching.aspx

Web API Routing – The Basics

Working with API projects, it’s easy to miss some key rules about the routing. This post is basically the result of some that I missed, and subsequent the investigation. It covers some very basic routing rules, and it certainly not intended to be an exhaustive guide.

.Net Framework

Starting with a .Net Framework Web API, let’s create a new web app:

And add a new controller:

Here’s the code for the controller; as you will see, it’s massively complex, but the good news is that you only need to pay attention to the name of the action, and the code inside it:

public class TestController : ApiController
{
    [HttpGet]
    public IHttpActionResult TestAction()
    {
        return Ok("TestAction Performed");
    }
}

Let’s run the project and navigate to the URL:

How did I know that was the URL? It’s magic, and you can buy some of that magic by sending a cheque for the low, low price of $25 to the address shown at the bottom of the screen.

Actually, it’s defined in WebApiConfig.cs:

Parameters

Where there is more than a single function, one surprising (to me) feature is that the parameters that it accepts is more important to the routing than the name of the controller. Here’s a second action with a parameter:

[HttpGet]
public IHttpActionResult TestAction2(string test)
{
    return Ok("TestAction2 Performed");
}

… and here’s it working:

However, should I not give it the parameter that it craves, it hides away, and instead, we get the first function that’s no too fussy about parameters:

It doesn’t even matter whether I just put some drivel as the controller name; the first criteria is the parameter:

This is because, according to this it follows these criteria:

The default implementation is provided by the ApiControllerActionSelector class. To select an action, it looks at the following:
• The HTTP method of the request.
• The “{action}” placeholder in the route template, if present.
• The parameters of the actions on the controller.

So, if we add the {action} placeholder, that ensures that it uses the correct method:

public static void Register(HttpConfiguration config)
{
    // Web API configuration and services
 
    // Web API routes
    config.MapHttpAttributeRoutes();
 
    config.Routes.MapHttpRoute(
        name: "DefaultApi",
        //routeTemplate: "api/{controller}/{id}",
        routeTemplate: "api/{controller}/{action}/{id}",
        defaults: new { id = RouteParameter.Optional }
    );
}

Otherwise, we get a best guess based on the parameters.

.Net Core Web API

The rules have changed since switching to .Net Core; WebApiConfig has gone and, in its place, it a localised routing system.

Here, you tell the class how to handle routing; for example, the following:

[Route("api/[controller]")]

Will result anything decorated with HttpGet being called when the controller is called. The parameters must be explicitly decorated; so passing no parameters would look like this:

[HttpGet]
public string OneTest()
{
    return "TestOne";
}

Whereas, a single parameter would look like this:

[HttpGet("{id}")]
public string aaa(int id)
{
    return "value aaa";
}

If you duplicate the signatures then they are not found. As with the framework version, you can simply tell it to look to the action name that you give it:

[Route("api/[controller]/[action]")]
public class TestController : Controller
{
    [HttpGet]
    public IEnumerable<string> TestActionOne()
    {
        return new string[] { "one value1", "value2" };
    }
 
    [HttpGet]
    public string TestActionTwo()
    {
        return "two value";
    }

But, again, it pays no attention to parameters until you decorate it correctly.

References

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing

Short Walks – Instantiating an Object Without calling the Constructor

One of the things that caught my attention at DDD North was the mention of a way to instantiate an object without calling its constructor.

Disclaimer

Typically, classes have code in their constructors that are necessary for their functionality, so you may find that doing this will cause your program to fall over.

System.Runtime.Serialization

The title of the namespace is probably the first thing that betrays the fact that you shouldn’t be doing this; but we’re already halfway down the rabbit hole!

Here’s some code that will create a class using reflection the normal way:

    static void Main(string[] args)
    {
        var test = Activator.CreateInstance<MyTestClass>();
        test.MyMethod();

        Console.WriteLine("Hello World!");
        Console.ReadLine();
    }

    public class MyTestClass
    {
        public MyTestClass()
        {
            Console.WriteLine("MyTestClass Initialise");
        }

        public string test1 { get; set; }

        public void MyMethod()
        {
            Console.WriteLine("Test MyMethod.");
        }
    }

The output is:

And here’s the code that circumvents the constructor:

        static void Main(string[] args)
        {
            var test2 = FormatterServices.GetUninitializedObject(typeof(MyTestClass)) as MyTestClass;
            test2.MyMethod();

            Console.WriteLine("Hello World!");
            Console.ReadLine();
        }

And we haven’t invoked the constructor:

Short Walks – Error: could not find dependent assembly

Error: could not find dependent assembly ‘System.Runtime, Version=4.1.1’

This error can occur when you have conflicting versions of a system (or any) assembly. The following is a .Net Framework feature that will redirect the assemblies to be the same, and thereby resolve the conflict:

      <dependentAssembly>
        <assemblyIdentity name="System.Reflection" publicKeyToken="b03f5f7f11d50a3a" culture="neutral" />
        <bindingRedirect oldVersion="0.0.0.0-4.1.1.0" newVersion="4.3.0" />
      </dependentAssembly>